超材料在高性能小型化天线中的应用

2013-11-28 来源:微波射频网 字号:

一、超材料概述

超材料(Metamaterial)是指自然材料通过人工手段加工设计后,具有自然材料所不具备的超常物理性质的人工复合材料或结构。

通常,任意一种媒质的电磁特性可以通过介电常数ε和磁导率μ两个宏观物理量来描述。自由空间的介电常数和磁导率分别用ε0和μ0表示(ε0和μ0均大于零),而对一般物质:ε=ε0εr,μ=μ0μr,其中εr表示相对介电常数,μr表示相对磁导率,媒质的折射率则被定义为。根据ε和μ取不同的值,可以把材料空间分为四个象限,如图1所示。第一象限(ε﹥0,μ﹥0)表征的是自然界中的一般性材料,也称为右手材料,电磁波在这种材料中传播时电场、磁场与波矢量方向满足右手螺旋关系,能量与相位的传播方向相同(前向波);第二象限(ε﹤0,μ﹥0)表征的是等离子体材料,第四象限(ε﹥0,μ﹤0)表征的是铁氧体材料,由于电磁波在这两种媒质中传播时相位常数为虚数,因此这两种材料都只存在倏逝波;第三象限(ε﹤0,μ﹤0)表征的是左手材料,电磁波在这种材料中传播时电场、磁场与波矢量方向满足左手螺旋关系,能量与相位的传播方向相反(后向波)。

超材料在高性能小型化天线中的应用 ε和μ构造的材料空间

图1  ε和μ构造的材料空间

自然界中的一般性媒质只占到了第一象限的一部分,等离子体和铁氧体也仅占了第二象限和第四象限中少有的几种,而第三象限(ε﹤0,μ﹤0)中的左手材料在自然界根本不存在。也就是说绝大部分的媒质需要通过“超材料”的方法获得,包括所有的左手材料和大部分的右手材料,不过狭义的超材料通常是指左手材料。

二、超材料的研究历程

从20世纪初期起陆续有一些学者研究了负介电常数媒质及后向波的传输特性,1968年前苏联科学家V.G.Veselago系统地分析了介电常数和磁导率同时为负值的假想媒质的特性,并提出了左手材料的概念。他的研究表明:左手材料不仅具有负折射率(如图1所示,入射波与折射波在法线同一侧)和传播后向波的特性,还具有逆多普勒效应和逆切仑科夫辐射、亚波长衍射等奇异特性。但在接下来的30年由于缺乏实验验证,左手材料一直没得到重视,直到1996年英国科学家Pendry构造了由周期性排列的细金属棒阵列组成的人造媒质,实现了负的等效介电常数,而后在1999年,又构造由金属谐振环阵列组成的人造媒质实现了负的等效磁导率。之后在2001年美国杜克大学Smith教授带领的研究小组采用Pendry的理论模型,将双面分别印制有细金属丝和金属谐振环结构有规律地排列在一起,实现了等效介电常数和磁导率同时为负值的左手材料,如图2所示,并通过棱镜实验验证了左手材料的存在,此后,关于左手材料的理论研究和结构设计、应用研究等迅速成为物理学界和电磁学界的研究热点。但是由于左手材料损耗大、带宽窄的,使得它难以得到应用。

左手材料的结构

图2  左手材料的结构

与此同时,也就是在2002年,Eleftheriades、Oliner、Caloz-Itoh带领的三个研究小组几乎同时提出了左手材料的传输线模型。众所周知,传统无耗传输线(右手传输线)的等效电路模型可由一个低通LC网络构成,单元模型如图3(a)所示,如果我们把低通的电路结构换成高通的结构,即把串联电感置换成串联电容,并联电容置换成并联电感,如图3(b)所示,则构成了可传输后向波的左手传输线的等效电路模型。在实际中由于存在寄生效应,纯左手传输线是无法实现的,只能设计出一种在某个频率范围呈现“左手特性”,在其他频率范围内呈现“右手特性”的传输线,这种传输线被称为“复合左/右手传输线”(Composite Right/Left —Handed transmission lines,简称为:CRLH TL),等效电路模型单元如图3(c)所示。这种超材料与由金属谐振结构构成的左手材料相比具有损耗小,带宽宽的优点,且具有奇异的色散特性,在实现无源器件小型化、漏波天线从背射到端射连续扫描以及实现谐振型天线小型化等方面得到了很多应用。

各类理想传输线等效电路模型单元

图3  各类理想传输线等效电路模型单元

主题阅读:天线  超材料