薄膜体声波滤波器的材料、设计及应用

2013-12-12 来源:微波射频网 字号:

随着现代无线通信技术向高频、高速方向的发展,人们对高频通信常用的前置滤波器提出了更高的要求。目前射频系统中使用的带通滤波器主要有介质陶瓷滤波器和声表面波(SAW)滤波器[1]。由于介质陶瓷滤波器存在体积偏大和工艺兼容性差等问题,限制了其进一步的发展。尽管SAW滤波器能达到较高的Q值,几何尺寸也更小,但由于其叉指电极的指宽和间隙与工作频率成反比,增加了光刻工艺的难度,限制了其高频应用。因此,人们开始着手研究基于新材料、新结构的滤波器。

薄膜体声波谐振器(FBAR)是一种全新的射频滤波器[2]。FBAR器件尺寸远小于传统的基于电磁波的介质滤波器,其工作频率更高,且拥有更好的带外抑制性能和更低的插入损耗。相比于SAW滤波器,体声波滤波器在功率容量、滤波性能及频率温度系数等方面均有一定优势,而且其制作工艺与半导体工艺兼容,在吉赫兹以上的高频应用中,体声波(BAw)滤波器正成为最佳的选择。

1、FBAR的原理与结构

FBAR采用电极一压电薄膜一电极的三明治结构,压电薄膜的逆压电效应将输入的高频电信号转化为一定频率的声信号。当声波在压电薄膜中的传播距离正好是半波长的奇数倍时就会产生谐振,其中谐振频率处的声波损耗最小,使得该频率的声信号能通过压电薄膜层,而其他频率的信号被阻断,从而只在输出端输出具有特定频率的信号,以实现电信号的滤波功能[3]。压电薄膜的厚度在很大程度上决定了FBAR的谐振频率, 如式(1)所示:

f≈υ/λ=υ/2d (1)

其中:v为压电层中的纵向声速,d为压电层厚度,为声波波长。在实际的谐振器中,尚有其他沉积层对谐振频率产生影响,因此式(1)只是一个近似的描述。通常情况下,大多数材料的v在3000~ll000m/s范围,根据式(1)可知一般压电层厚度应控制在几个微米或以下。由于压电层厚度对谐振频率起着决定作用,所以在沉积压电薄膜时对厚度的精确控制显得尤为重要。

品质因数Q是描述滤波器件的一个很重要的指标。FBAR的Q值取决于压电薄膜材料的固有损耗以及体声波在衬底中的损耗,因此在电极边界形成声波的全反射能有效提高Q值。实现声波全反射的结构主要有两种[4],其中最直接的方法是将压电层和电极做成膜结构或一并沉积到一个薄的支撑膜上,形成空气一固体交界面;还有一种方式是采用“声波镜”形成反射面来实现,这种结构被称为“固态装配谐振器(SMR)”。膜结构因制作工艺的不同可分为两种情形[5]:其一是采用体微加工技术,先在衬底上沉积一层压电薄膜,然后去掉部分衬底,形成边缘支撑悬空的膜结构,如图1(a)所示。另外,可采用表面微加工技术,先沉积一层牺牲材料作为临时的支撑膜,然后用刻蚀技术除去该牺牲层获得空气气隙而形成反射面[6],其结构如图1(b)所示。悬空膜结构的FBAR因衬底的大量移除而造成器件的机械性能降低,而且在制备过程中需要进行硅的各向异性腐蚀,腐蚀厚度难以控制,也会产生54.74。的腐蚀角,限制了封装密度的提高,也加大了工艺难度。而采用表面微加工技术不需要对衬底的反面进行加工,降低了工艺难度且与传统IC工艺兼容,因而被广泛采用[7,8]。

SMR结构的FBAR采用若干高声阻抗和低声阻抗的材料交替堆叠形成布拉格反射面。在每个高阻抗层和低阻抗层的界面,大部分声波被反射,由于其层厚为谐振频率波长的1/4,因而反射波会按合适的相位叠加,通过多次反射后最终达到近似全反射。一般来讲,要达到较高Q值需要5~7层反射层。因SMR结构的多层反射膜能起支撑作用,因此有更好的机械强度,但由于有更多的非压电层参与谐振,它的有效机电耦合系数要小于膜结构的情形。同时,较厚的反射底层也使SMR更难与底电路互连以便与其他芯片集成。另外,要制备结构复杂且厚度精确控制的多层膜。在工艺上有一定难度,制作成本也更高。

2、FBAR的压电薄膜材料技术

2.1、压电薄膜材料的选择

压电薄膜的质量对滤波器的性能有着重要的影响,因此压电材料的选择就显得极为重要。压电层是多晶薄膜,方向不一致的晶粒会严重降低压电耦合系数和品质因数,因此,理想的是所有晶粒的c轴取向完全一致。对体声波滤波器的研究表明,要得到高性能的器件,就必须尽量提高压电薄膜的机电耦合效率,减小机械损耗和漏电,因此制备取向一致、厚度精确可控的压电薄膜是制作FBAR的关键。目前,用于BAW滤波器的压电材料主要有氮化铝(AlN)、氧化锌(ZnO)、锆钛酸铅(PZT)。下面通过几个主要的性能参数对这3种材料进行比较[9]。

(1)压电耦合系数k。它是衡量压电材料压电性强弱的重要物理量,决定了滤波器可实现的带宽。从这个指标来看,PZT最理想,kt2=8.15;ZnO次之,kt2—7.5;A1N稍差,kt一6.5。

(2)材料损耗。损耗越小,越能实现高Q值和低插损。在这方面,A1N和ZnO要优于PZT,需进一步对PZT材料进行研究,以降低其固有损耗。

(3)介电常数Er。较高的介电常数可以减小谐振器的尺寸,前两种材料的Er约为1O,而PZT的Er高于400,在这方面具有明显的优势。然而,如果压电材料的Er过大,则上下电极间电容值会很大,将会导致工作于吉赫兹频段的滤波器的输入输出间导纳过大,难以保证阻带的隔离度[3]。因此,制作吉赫兹频段的滤波器,Er为100左右最合适。

主题阅读:FBAR  滤波器